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Superconducting RF cavity in high energy particle
accelerators

Superconducting RF cavities excel in applications where one needs
‘continuous wave or long-pulse’ acceleration with gradients above
a few million volts per meter (MV m-1)

« X-FEL at DESY Hamburg uses SCRF cavities in its elctron Linac
« SNS, Oakridge USA uses SCRF cavities in its proton LINAC
 European Spallation Neutron Source will use SCRF cavities

« Future International Linear Collider will use SCRF technology

« Planned Indian Spallation Neutron Source will use SCRF technology




Radio Frequency (RF) Cavity
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What do we want from a good RF cavity ?

High Quality Factor: Q = (Stored energy)/(Dissipated power)

High Accelerating Gradient : E

Acc

Dissipated power: P, = %ﬁ@zds
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Two fundamental limits for Niobium SCRF cavities

1. A critical RF magnetic field above
which the perfect superconducting
state is destroyed - limits the
Accelerating Field or Gradient.

2. Superconducting surface
resistance Rg , inversely proportional
to Q — limits Quality Factor Q
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operating at 2K,

* For good quality Nb material H.; ~ 1.8-1.9 kOe at 2K.

* This will correspond to a gradient of ~ 50 MV/m, For a 1.3 GHz elliptical cavity




Materials and surface problems in Niobium SCRF cavities

Extrinsic effects

Surface roughness, grain boundaries — Reduce Q and E ..

Impurities — Degrades superconductivity (?7? )

Surface Oxides — Suspected to degrade Superconducting response??
Field emission and multipacting — Quenching of the Cauvity.
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Most of these problems are solved

with proper cavity shape, and chemical
treatment and cleaning of cavity surface.
Field emission free 1.3 GHz elliptical
cavities reaching up to 35-40 MV m-!
are obtained regularly in various labs.

Is 35-40 MV m the upper limit of
achievable gradient ? Answer is No!




Puzzles and Open Issues in Niobium SCRF cavities

Puzzles:
« All cavities fabricated in the same way do not give high gradients.

 Cavity gradient seldom reaches above 45 MV/m.
* Recent report of a 9 Cell Tesla type cavity reaching 45 MV/m

Open Issues:
(1) What is the RF critical magnetic field in Peak Magnetic Fisld [0e] | He.,
Niobium? Is it 0 425 352 1278 1704 2130 ¢ 2556
— Thermodynamical critical field-H, or field b ’ ’ | | |
for first flux line penetration-H? E‘|_T_
— Does it depend on the processing of the o - If' Ideal| |
SCRF cavities? 2 1E+10 oS I
i Qslope | — ‘x\ I
. |
(2) Why does the RF surface resistance of \\ i
niobium increase sharply at high RF - \ I
magnetic field? 0 10 20 2 40 50 60
_— High_ﬁe|d slope in the quality factor- Accelerating Electric Field Ea [MV/m]
Q-slope



http://en.wikipedia.org/wiki/Image:SRF_Cavity_Q_vs_E_1.png

Existing method for Niobium Material qualification

» Current method mainly relies on improving the residual resistivity ratio
(RRR) of the Nb.

* It is based on the belief that impurity elements degrade superconducting
properties of Nb. High RRR (>300) seemingly signifies high purity level
of Nb !l

* High RRR Nb + right cavity shape + chemical treatment
= Low extrinsic (+ surface) defects leading to High Gradient and Q.

* Niobium refinement process is very expensive, especially in reducing Ta
impurity level from >1000 ppm to <500 ppm.



p(uld cm)

Residual Resistivity Ratio (RRR) of SCRF

Niobium material
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* RRR gives an idea of the defects in a
metal

 Defects in a metal do not mean impurity
elements alone, but also encompass
point defect like vacancy, line defect
(dislocations), grain boundaries etc.

* High RRR, however, does not
necessarily say how good (or bad) are
the superconducting properties of a
material

* Gives indirect information on thermal
conductivity of the normal state via
Wiedemann-Franz law

» Thermal conductivity in the
superconducting state is non-trivial




Residual Resistivity Ratio (RRR)

Resistivity of Metals
1 | | | 1

The resistivity p is defined by scattering
events due to the imperfections and thermal :
vibrations.

Cu + 3.32 at% Ni

Cu+ 2.16 at% Ni —

b e o =

Total resistivity p,,; can be described by the
Matthiessen rule:
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RRR = Ptotal / Po Where’ Po = pimpurity * Pdeformation

A pure but deformed metal will have relatively low RRR
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* High RRR, however, does not
necessarily say how good (or bad) are
the superconducting properties of a
material

* Gives indirect information on thermal
conductivity of the normal state via
Wiedemann-Franz law

» Thermal conductivity in the
superconducting state is non-trivial
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.....A good thermal conductivity is the main motivation for using high
purity niobium with RRR ~ 300 as the material for cavity production.....
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Residual Resistance in a Nb SCRF Cavity

Improvements in the surface preparation of bulk Nb SCRF cavities over the
years have reduced the typical residual resistance (R,..) value from 100 nQ to

1-10 nQ.

R, becomes the dominant term in the surface resistance at low frequency
(<750 MHz) and low temperatures (< ~2 K), where Rg-5 becomes
exponentially small.

There are several possibilities contributing to the R ..

(1) losses due to trapped magnetic field,
(2) losses due to normal-conducting precipitates near the surface,

(3) grain boundary losses,
(4) metal/oxide interface losses, and
(5) losses due to normal-conducting electrons in subgap states.

RRR measurement of starting Nb material will not necessarily give the
information regarding these issues!

G Ciovati, CondMat ArXiv:1501.07398v1, 2015



SCRF Materials R&D:
Approach of a Condensed Matter Physicist

Superconducting transition temperature, Superconducting
Critical Fields, Surface Resistance and thermal diffusivity are
the most important parameters for SCRF materials

Question we are asking:

What is the tolerable level of elemental impurities in
sustaining the superconducting and other relevant materials
properties of Niobium, which are required for obtaining best
performance in a Superconducting Radio Frequency
(SCRF) cavity ?




Characterization of Nb materials for SCRF cavity
applications should be done in terms of

Superconducting transition temperature,
Lower critical magnetic field
Superconducting surface resistance
Thermal conductivity and specific heat in the
superconducting state : thermal diffusivity

£ CORIDRES




Critical Fields in a Superconductor
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» External magnetic field is totally expelled
below a lower critical field limit Hc;.

* In a type-I superconductor above H_, normal
state is reached.

* In a type-Il superconductor magnetic field
penetrates the materials above Hc, in the
form of quantized flux lines; the material
remains superconductor until a upper critical
field He,

* Ho1<H<H., — Abrikosov lattice or Vortex
state — important for high critical current (J,)
applications e.g. SC magnets.

* H < H; —» Meissner state.

* Ho; determines the limit of gradient in a
SCREF cavity




Effect of Ta and Fe impurities in Nb materials

Determined average concentrations of impurities in Nb samples with Indus-2
synchrotron source

sample Ta-Content | Fe-Content | Cu-Content | Zn-Content

(ppm) (ppm) (ppm) (ppm)
Technical-Niobinm-1FP 133094306 33050 atd 1115
Technical-Niobium-2FP M2 R0 200460 19+7 13410
Technical-Niobinm-3P 243110 260600 1248 137
Technical-Niobinm-1CT | 1285+35 10+15 K1hH 14+4
Technical-Niobinm-2CT GH4+£54 L3+10 1447 J2+8
Technical-Niobinm-3CT 149411 18+5 K1hH 14+4

Supercon. Sci. Tech. 25 115020 (2012)




Effect of Ta Impurities on the SC Properties of Nb

Study of Magnetization versus Temperature of superconducting Nb samples.
Allows accurate determination superconducting transition temperature (T.)

critical fields.
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Nb samples as received from vendor

Chemically treated Nb samples

* No significant Variation of T as a function of Ta impurity contents
* In fact 1-2% Ta in Nb increases the T (literature report)
* Perceptible change in T in the chemically polished sample

Supercon. Sci. Tech. 25 115020 (2012)




Effect of Ta Impurities on the SC Properties of Nb
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 Isothermal field dependence of Magnetization in Nb samples.
 Allows accurate determination superconducting critical fields (H¢;, Hc))
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Some more comments on Ta impurities in Nb

What happens if Ta impurities forms cluster of micron size and reside
as inclusions on the surface of SCRF cavity? Thus create hot spots?

 Ta being chemically very similar to Nb, leads to the difficulty of separating it,
and Ta and Nb readily forms solid solution. So statistical probability of forming
Ta cluster is low, and the probability of such Ta clusters residing on the surface
IS even lower.

« If such Ta clusters actually form, then they are expected to be chemically quite
pure and free from structural defects. Thus at the operating temperature of
SCRF cavities the electrical resistivity is expected to be quite small.

 Ta is actually a superconductor of Tc 4.3K. Thus for a Nb SCRF cavity
operating at 2K, normally the Ta clusters are not supposed to become hot spots.

* Even if at 2K , at high RF fields such Ta clusters tend to become normal, being
surrounded by superconducting Nb they are still likely to remain as
superconductors through proximity effect !




Surface Resistance in a Superconductor

Quality factor of a SCRF cavity is inversely proportional to surface resistance

Response of a superconductor in ac field is described by two fluid model:

» Cooper pairs form superfluid.

» Unpaired electrons form normal fluid — source of power dissipation in ac field.

BCS Surface resistance

Rpcs o Ay w”f exp(—1.76T,/T)

» Surface resistance decreases exponentially with temperature.

 Surface resistance depends to the square of frequency.




Influence of impurity on Surface Resistance

In a real material like Nb A = AV (€,/€) ,
where, ¢, and ¢ are coherence lengths in
the pure and real material respectively,

and gt=¢,t+/*
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Magneto thermal conductivity of SCRF cavity Nb-materials

« Thermal conductivity as function of T and H is being studied for the
first time for Nb with intermediate impurity level

 Interesting field dependence near the lower critical field
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Chemistry of SCRF cavity Nb-materials

Defects in the inner surface of the cavity: dissolved foreign, abrasive
particles from grinding, imprints from the deep drawing process, niobium
protrusions from scratches or dirt particles sticking to the surface.

Welding joints are source of mechanical defects.

Cleaning the niobium with chemical methods is the most practical way to
achieve a high-quality superconducting surface.

Niobium metal has a natural Nb,O. layer with a thickness of about 5 nm:
Below this layer other oxides and sub-oxides can be found.

While Nb,Oyg is an insulator, NbO is a conductor (Tc = 1.6 K). Nb,0; 5 shows
interesting magnetic properties.

Nb,O; is chemically rather inert in general, but can be dissolved with
hydrofluoric acid (HF).




Buffered chemical polishing of Nb-materials

Nb>*

6Nb + 10 HNO, — 3 Nb,0. +10NOT + 5H,0

Nb,O, + 10 HF < 2NbF, + 5H,0

C Z Antonie: CondMat Archive

This consists of two basic steps: (1)
dissolution of the Nb,O; layer by HF, (2) re-
oxidation of the niobium by a strongly
oxidizing acid HNO,. Then, the new oxide
layer will be dissolved by the HF again.

The reactions are strongly exothermic;
additionally, large quantities of hydrogen
gases are produced.

To obtain a better process control a buffer
substance like phosphoric acid H;PO,
(concentration of 85%) is added

Typically, BCP solution, the 1:1:1 or 1:1:2
(volume) mixture of HNO, (69%), HF (49%)
and H;PO, (85%).

All crystalline defects are preferentially
attacked; grains with various orientations
are not etched at the same rate, which
induces roughness!




Electro polishing of Nb-materials
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Fig. 4. Niobium surfaces after etching (a) and EP (b). SEM micro-graphs are courtesy of G. Arnau, CERN.

L. Lille etal. NIM. A
516 (2004) 213-227

The material is removed in an acid
mixture under the flow of an electric
current.

The most widely used electrolyte is a
mixture of concentrated HF and
concentrated H,SO, in volume ratio of
1:9

Sharp edges are smoothed out and a
very glossy surface can be obtained.

The electric field is high at protrusions so
these will be dissolved first. On the other
hand, the field is low in the grain
boundaries and little material will be
removed here.

The produced gases (mainly hydrogen)
are rapidly removed from the wetted
niobium surface



Hydrogen and oxygen in SCRF-Cavity Nb materials

The addition of interstitial solute atoms (below
the solubility limit) in Nb material degrades
the superconducting properties.

with higher hydrogen concentration interstitial
H in Nb forms different stoichiometric and
non-stoichiometric hydride phases during
cool-down at low temperatures. Such
hydrides may cause the degradation of the
surface resistance and hence the quality
factor Q - Q disease.

The defects in Nb in the form of vacancies,
dislocation networks and impurity atoms may
trap some fraction of interstitial H, thus
lowering the number of H atoms available for
hydride precipitation. This will lead to smaller
hydride sizes translating into higher field
onset of strong cavity losses. Hence, a
relatively impure Nb material may be really
good for SCRF cavity performance!

PHYSICAL REVIEW B VOLUME 9, NUMBER3 = 1 FEBRUARY 1974

Effects of interstitial oxygen on the superconductivity of niobium‘

C. C. Koch, J. O. Scarbrough, and D. M. Kroeger
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
(Received 14 May 1973)
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Some Results on the possible effects of hydrogen and oxygen
on the superconducting properties of Nb materials

Effect of Buffered Chemical Polishing (BCP) treatment on the T of Nb samples

Samples from Jlab, USA.
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Conclusions : BCP degrades Tc considerably:.

Supercon. Sci. Tech. Vol. 21 065002 (2008); Vol. 22 105014 (2009)




Some Results on the possible effects of hydrogen and oxygen
on the superconducting properties of Nb materials
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BCP treatment reduces H., as compared to that in
pristine Nb.

SCRF cavity prepared with
such BCP Nb would reach
maximum 30-35 MV/m

Supercon. Sci. Tech. Vol. 21 065002 (2008); Vol. 22 105014 (2009)




Anomalous flux-pinning properties of chemically polished Nb
materials
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Supercon. Sci. Tech. Vol. 21 065002 (2008)

* Magnetization hysteresis, hence flux-
pinning is less in chemically polished
Nb samples.

 This is observed in fine grain, large
grain and single crystal samples of Nb.

» Chemically polished samples is
supposed to have Bean-Livingston
surface barrier.

» The surface of the pristine samples is
strained and have more impurity
atoms. So it can have enhanced
surface pinning.

» Absence of flux-jumps in BCP Nb
indicates that bulk pinning is affected.




Superconducting properties of SCRF cavity Nb materials:

EP versus BCP
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* Hg, of EP treated sample is higher
« EP treated Nb SCRF-cavities show higher gradient E__.




Temperature and magnetic field dependence of thermal
conductivity of superconducting large grain Niobium

Normal state k (T) of BCP treated Nb is lower (by 10%) than that of pristine Nb.
 Both Tc and H,, of BCP treated Nb is lower than the pristine Nb.

* A small but distinct dip in kK (T) is observed at H,
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Supercon. Sci. Tech. Vol. 25 035010 (2012)




Temperature and magnetic field dependence of heat capacity
of superconducting large grain Niobium
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Performance of a Nb Quarter Wave Resonator

10"

lllllllllllllll

Q vs Accelerating Gradient plot

QWR fabricated with the Nb materials
at IUAC, New Delhi and installed in
the superconducting LINAC.

The electro-polished coupon of the
same Nb materials has been studied in
details for their superconducting
properties.

Limiting accelerating gradient is close
to the intrinsic limit of accelerating
gradient as predicted from the
measured value of H,, of the Nb
coupons.

Phys. Rev. ST Accel. Beams Vol 14 12201 (2011)




Passivation with Nitrogen and annealing in Ti-gettered
atmosphere of a Nb SCRF-cavity

Both the procedures will increase the
T. of Nb material at least in the surface
region.

Rgcs at 2 K will be reduced in
comparison to pure Nb, hence Q in
SCREF cavity will go up.

M (emu)

However, H-, will decrease and as
result E, . will also decrease.
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Ongoing and future works & newer SCRF materials

Which one is most influential: H_,or field for first flux-line
penetration H, ?

Does upper critical field H, (or Hc;) play any role in the SCRF
cavity ?

Thermal conductivity in the superconducting state of NDb.
Specific heat and thermal diffusivity.

Detailed study of the surface resistance of superconductors Ry In
applied magnetic fields.

Nb thin films — Nb-coated Copper cavities.
Newer materials : Nb-Zr, Nb-Al, TiV, Mo-Re alloys, MgB, etc.
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Table 1. Technical specifications of niobium applied to the fabricabon of 1.3 GHz superconducting cavities for the EXFEL.

Electrical and mechanical properties Content of the main impuriies in Wt ppm (ug g ')
EER =300 Ta =300 H £d
Grain size == 50 pm W =30 O <10
Yield strength, R, 0.2 50 <R, 0.2 -:111.:13 Nmm™ Mo =50 N =10
Tensile strength =140 N mm Ti =350 C <10
Elongation at fracture =305 Fe =30

Vickers hardness HV 10 <ol M =30




Electrical resistivity and thermal conductivity of large grain

Niobium

Chemically untreated sample of Large Grain Nb
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NORMAL AND SUPERCONDUCTING PROPERTIES OF
NIOBIUM RICH NIOBIUM-TANTALUM ALLOYS

T. OHTSUKA
Department of Physics, Tohoku University, Sendai, Japan

and

Y. KIMURA
Institute for Solid State Physics, University of Tokyo, Minato-ku, Tokyo, Japan

T T T T I
K 0k e
.[‘.\. NbIDO-cTa e TABLE 1 ' ‘/
- - - 80 )
TS5  Tacontent ol /
g I (at.%) 0 2 4 6 10 15 30 40 5§
. c:i,,;_g_
; o ¥ =
11 (mimoleK?) 7.80 7.98 7.98 7.95 7.85 7.5 6.95 6.70 o
i W o oo, H(K) 280 279 272 270 271 260 259 260 200
\ TAK) 9.23 9.02 8.87 8.76 8.40 B.08 7.17 6.56 ol *
N s A 0.91 0.88 0.86 0.85 0.84 0.82 0,78 0.76 ‘
K Lo ° 0 20 30 :.‘a 50
2 c{Ta at %)
| . . 365 Dependence of the residual resistance p, on Ta content c.
10 20 30 40 50
c (Ta at %)

2 at% Ta suppresses T of Nb from 9.23 K to 9.02 K.

Residual resistivity increases linearly with Ta concentration indicating
homogenous distribution of Ta.

Electronic coeff. of specific heat as a function of Ta shows anomalous feature



